Probing the perturbative NLO parton evolution in the small-*x***region**

M. Glück, C. Pisano, E. Reya

Universität Dortmund, Institut für Physik, 44221 Dortmund, Germany

Received: 6 December 2004 / Revised version: 1 February 2005 / Published online: 9 March 2005 – © Springer-Verlag / Società Italiana di Fisica 2005

Abstract. A dedicated test of the perturbative QCD NLO parton evolution in the very small-x region is performed. We find a good agreement with recent precision HERA data for $F_2^{\rm p}(x,Q^2)$, as well as with the present determination of the curvature of F_2^{p} . Characteristically, perturbative QCD evolutions result in a positive curvature which increases as x decreases. Future precision measurements in the very small x-region, $x < 10^{-4}$, could provide a sensitive test of the range of validity of perturbative QCD.

Parton distributions $f(x, Q^2)$, $f = q, \bar{q}, g$, underlie the Q^2 -evolution dictated by perturbative QCD at $Q^2 \geq$ 1 GeV^2 . It was recently stated [1] that the NLO perturbative QCD Q^2 -evolution disagrees with HERA data [2,3] on $F_2^{\mathbf{p}}(x, Q^2)$ in the small-x region, $x \lesssim 10^{-3}$. In view of the importance of this statement we perform here an independent study of this issue. In contrast to [1] we shall undertake this analysis in the standard framework where one sets up input distributions at some low Q_0^2 , here taken to be $Q_0^2 = 1.5 \,\text{GeV}^2$, corresponding to the lowest Q^2 considered in [1], and adapting these distributions to the data considered. In the present case the data considered will be restricted to

$$
1.5 \,\text{GeV}^2 \le Q^2 \le 12 \,\text{GeV}^2, \quad 3 \times 10^{-5} \lesssim x \lesssim 3 \times 10^{-3} \tag{1}
$$

as in [1] and will be taken from the corresponding measured $F_2^{\rm p}(x,Q^2)$ of the H1 collaboration [2]. The choice of these data is motivated by their higher precision as compared to corresponding data of the ZEUS collaboration [3], in particular in the very small- x region.

We shall choose two sets of input distributions based on the GRV98 parton distributions [4]. In the first set we shall adopt $u_v, d_v, s = \bar{s}$ and $\Delta \equiv \bar{d} - \bar{u}$ from GRV98 and modify
 $\bar{u} + \bar{d}$ and the gluon distribution in the small x region to $\bar{u} + \bar{d}$ and the gluon distribution in the small-x region to obtain an optimal fit to the H1 data [2] in the aforementioned kinematical region. We shall refer to this fit as the "best fit". The second choice will be constrained to modify the GRV98 $\bar{u} + \bar{d}$ and g distributions in the small-x region as little as possible. We shall refer to this fit as GRV_{mod} . It will turn out that both input distributions are compatible. with the data to practically the same extent, i.e. yielding comparable χ^2 /dof. In view of these observations we do not agree with the conclusions of [1], i.e. we do not confirm a disagreement between the NLO Q^2 -evolution of $f(x, Q^2)$ and the measured [2, 3] Q^2 -dependence of $F_2^p(x, Q^2)$.

The remaining flavor-singlet input distributions at $Q_0^2 =$ $1.5 \,\text{GeV}^2$ to be adapted to the recent small-x data are expressed as

$$
xg(x, Q_0^2)
$$

= $N_g x^{-a_g} (1 + A_g \sqrt{x} + 7.283x) (1 - x)^{4.759}$, (2)

$$
x(\bar{u} + \bar{d})(x, Q_0^2)
$$

$$
= N_s a^{-a_s} \left(1 + A_s \sqrt{x} - 4.046x \right) (1 - x)^{4.225}, \qquad (3)
$$

where the parameters relevant for the large-x region, $x >$ 10^{-3} , which is of no relevance for the present small-x studies, are kept unchanged and are taken from, e.g. GRV98 [4]. The refitted relevant small- x parameters turn out to be

"best fit" :
$$
N_g = 1.70
$$
, $a_g = 0.027$, $A_g = -1.034$,
\n $N_s = 0.171$, $a_s = 0.177$, $A_s = 2.613$,
\nGRV_{mod} : $N_g = 1.443$, $a_g = 0.125$, $A_g = -2.656$,

$$
GRV_{\text{mod}}: N_g = 1.443, \quad a_g = 0.125, \quad A_g = -2.656,
$$

$$
N_s = 0.270, \quad a_s = 0.117, \quad A_s = 1.70,
$$

$$
(5)
$$

to be compared with the original GRV98 parameters [4]: $N_g = 1.443$, $a_g = 0.147$, $A_g = -2.656$ and $N_s = 0.273$, $a_s = 0.121, A_s = 1.80$. The resulting predictions are compared to the H1 data [2] in Fig. 1. These results are also consistent with the ZEUS data [3] with partly lower statistics. The corresponding χ^2 /dof are 0.50 for the "best fit" $(dof = 48)$ and 0.94 for GRV_{mod} $(dof = 50)$, respectively. Our treatment of the heavy flavor contributions to F_2 differs from that in [1]. We evaluate these contributions in the fixed flavor $f = 3$ scheme of [4], together with the massive heavy quark (c, b) contributions, rather than in the $f = 4$ (massless) scheme utilized in [1]. We have checked, however, that our disagreement with [1] does not result from our $f = 3$ plus heavy quarks versus the $f = 4$ massless quark calculations in [1]: we have also performed a fit for $f = 4$

Fig. 1. Comparison of our "best fit" and GRV_{mod} results based on (4) and (5), respectively, with the H1 data [2]. To ease the graphical representation, the results and data for the lowest bins in $Q^2 = 1.5 \,\text{GeV}^2$ and $2 \,\text{GeV}^2$ have been multiplied by 0.75 and 0.85, respectively, as indicated

Fig. 2. The gluon distributions at the input scale $Q_0^2 = 1.5 \text{ GeV}^2$
corresponding to (2) with the "best fit" and GBV paramcorresponding to (2) with the "best fit" and GRV_{mod} parameters in (4) and (5), respectively, and at $Q^2 = 4.5 \,\text{GeV}^2$. For comparison, the original GRV98 results [4] are shown as well by the dotted curves

massless quarks and the results for F_2 and its curvature, to be discussed below, remain essentially unchanged.

In Figs. 2 and 3 we show our gluon and sea input distributions in (2) and (3), as well as their evolved shapes at $Q^2 = 4.5 \,\text{GeV}^2$ in the small-x region. It can be seen that both of our new small-x gluon distributions at $Q^2 =$ $4.5 \,\mathrm{GeV}^2$ conform to the rising shape obtained in most available analyses published so far, in contrast to the valence-like

Fig. 3. The sea distribution $x(\bar{u} + \bar{d})$ at the input scale $Q_0^2 = 1.5 \,\text{GeV}^2$ in (3) with the "best fit" and GRV_{mod} parameters in (4) and (5), respectively, and at $Q^2 = 4.5 \,\text{GeV}^2$. For comparison, the original GRV98 results [4] are shown as well by the dotted curves

Fig. 4. Predictions for $F_2(x, Q^2)$ at $x = 10^{-4}$ plotted versus q defined in (6). Representative global fit results are taken from MRST01 [5] and CTEQ6M [6]. Most small- x measurements lie along the straight (dotted) line [1]

shape obtained in [1] where the gluon density xq decreases as $x \to 0$. It is possible to conceive a valence-like gluon at some very low Q^2 scale, as in [4], but even in this extreme case the gluon ends up as non-valence-like at $Q^2 > 1 \text{ GeV}^2$, in particular at $Q^2 = 4.5 \,\text{GeV}^2$, as physically expected.

Turning now to the curvature test of F_2 advocated and discussed in [1], we first present in Fig. 4 our results for $F_2(x, Q^2)$ at $x = 10^{-4}$, together with two representative

expectations of global fits $[5, 6]$, as a function of $[1]$

$$
q = \log_{10} \left(1 + \frac{Q^2}{0.5 \,\text{GeV}^2} \right) . \tag{6}
$$

This variable has the advantage that most measurements lie along a straight line [1] as indicated by the dotted line at $x = 10^{-4}$ in Fig. 4. The MRST01 parametrization [5] results in a sizable curvature for F_2 in contrast to all other fits shown in Fig. 4. This large curvature, incompatible with the data presented in [1], is mainly caused by the valencelike input gluon distribution of MRST01 at $Q_0^2 = 1 \,\text{GeV}^2$ in the small- x region which becomes even negative for $x <$ 10^{-3} [5]. A similar result was obtained in [1] based on a particular gluon distribution $xg(x, Q^2)$ which decreases with decreasing x for $x \lesssim 10^{-3}$ even at $Q^2 = 4.5 \,\text{GeV}^2$
(of Fig. 7 in [1]). More evaluately the eventuating and he (cf. Fig. 7 in [1]). More explicitly the curvature can be directly extracted from

$$
F_2(x, Q^2) = a_0(x) + a_1(x)q + a_2(x)q^2.
$$
 (7)

The curvature $a_2(x) = \frac{1}{2} \partial_q^2 F_2(x, Q^2)$ is evaluated by fitting
the prodictions for F_a (x, Q^2) at fixed values of p to a (line the predictions for $F_2(x, Q^2)$ at fixed values of x to a (kinematically) given interval of q. In Fig. 5a we present $a_2(x)$ which results from experimentally selected q -intervals [1]:

$$
0.7 \le q \le 1.4 \text{ for } 2 \times 10^{-4} < x < 10^{-2},
$$
\n
$$
0.7 \le q \le 1.2 \text{ for } 5 \times 10^{-5} < x \le 2 \times 10^{-4},
$$
\n
$$
0.6 \le q \le 0.8 \text{ for } x = 5 \times 10^{-5}.
$$
\n
$$
(8)
$$

Notice that the average value of q decreases with decreasing x due to the kinematically more restricted Q^2 range accessible experimentally. For comparison we also show in Fig. 5b the curvature $a_2(x)$ for an x-independent fixed q-interval

$$
0.6 \le q \le 1.4 \qquad (1.5 \,\text{GeV}^2 \le Q^2 \le 12 \,\text{GeV}^2). \qquad (9)
$$

Apart from the rather large values of $a_2(x)$ specific for the MRST01 fit as discussed above (cf. Fig. 4), our "best fit" and GRV_{mod} results, based on the inputs in (4) and (5), respectively, do agree well with the experimental curvatures as calculated and presented in [1] using H1 data. It should be noted that perturbative NLO evolutions result in a *positive* curvature $a_2(x)$ which increases as x decreases. This feature is supported by the data shown in Fig. 5a; since the data point at $x < 10^{-4}$ is statistically insignificant, future precision measurements in this very small- x region should provide a sensitive test of the range of validity of perturbative QCD evolutions.

Furthermore, the H1 collaboration [2] has found a good agreement between the perturbative NLO evolution and the slope of $F_2(x, Q^2)$, i.e. the first derivative $\partial_{Q^2} F_2$.

To conclude, the perturbative NLO evolution of parton distributions in the small- x region is compatible with recent high-statistics measurements of the Q^2 -dependence of $F_2^{\rm p}(x,Q^2)$ in that region. A characteristic feature of perturbative QCD evolutions is a *positive* curvature $a_2(x)$ which increases as x decreases (cf. Fig. 5). Although present data are indicative for such a behavior, they are statistically

Fig. 5. The curvature $a_2(x)$ as defined in (7) for **a** the variable q -intervals in (8) and **b** the fixed q -interval in (9) . Also shown are the corresponding MRST01 results [5]. The experimental curvatures (squares) shown in **a** are taken from [1]

insignificant for $x < 10^{-4}$. Future precision measurements and the ensuing improvements of the determination of the curvature in the very small- x region should provide further information concerning the detailed shapes of the gluon and sea distributions and perhaps may even provide a sensitive test of the range of validity of perturbative QCD.

Acknowledgements. This work has been supported in part by the Bundesministerium für Bildung und Forschung, Berlin/Bonn.

References

- 1. D. Haidt, Eur. Phys. J. C **35**, 519 (2004)
- 2. C. Adloff et al., H1 Collab., Eur. Phys. J. C **21**, 33 (2001)
- 3. S. Chekanov et al., ZEUS Collab., Eur. Phys. J. C **21**, 443 (2001)
- 4. M. Gl¨uck, E. Reya, A. Vogt, Eur. Phys. J. C **5**, 461 (1998)
- 5. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C **23**, 73 (2002)
- 6. J. Pumplin et al., JHEP **7**, 12 (2002) [hep-ph/0201195]